HYDROPEROXYSESQUITERPENE AND LIGNAN CONSTITUENTS OF MAGNOLIA KOBUS

TOSHIYUKI IIDA, MAYUMI NAKANO and KAZUO ITO *

Faculty of Pharmacy, Meijo University, Yagoto, Tempaku, Nagoya, 468, Japan

(Revised received 3 July 1981)

Key Word Index – Magnolia kobus; Magnoliaceae; lignans; kobusin; epieudesmin; sesquiterpenes; 9-oxonerolidol; hydroperoxides; kobusimin A and B: ¹³C NMR.

Abstract—Two new hydroperoxysesquiterpenes, kobusimin A and B, have been isolated from the leaves of Magnolia kobus.

INTRODUCTION

The essential oil of Magnolia kobus (Japanese name: Kobusi), a valuable Japanese decorative plant, contains many terpenes [1]. Three lignans, sesamin, kobusin and lirioresinol B dimethyl ether have been found in its leaves [2] and seeds [3].

In connection with our interest in biologically

active sesquiterpenes, we have re-investigated the chemical constituents of *M. kobus* and hereby report the isolation of two hydroperoxysesquiterpenes, kobusimin A (7) and kobusimin B (8), along with five known lignans [sesamin (1), kobusin (2), eudesmin (3) [4], epieudesmin (4) [4] and phillygenin (5) [5]] and the known sesquiterpene [9-oxonerolidol (6) [6]].

$$R_3$$
 R_4
 R_2
 R_3
 R_4
 R_2
 R_4
 R_2
 R_4
 R_4
 R_4
 R_5
 R_4
 R_5
 R_4
 R_5
 R_4
 R_5
 R_4
 R_5
 R_4
 R_5
 R_6
 R_7
 R_8
 R_8
 R_9
 R_9

674 T. IIDA et al.

Table 1. ¹³C NMR data (ppm) for eudesmin (3), epieudesmin (4) and phillygenin (5)

Carbon no.	3	4	5
1)		54.4 d	54.4 d
}	54.0 d		
5		50.1 d	50.1 d
2]		87.4 d	87.5 d
}	85.5 d		
6)		81.9 d	81.9 d
4]		69.6 d	69.5 d
}	71.5 t		
8 J		70.9 t	70.9 t
ر '1		133.5 s	132.8 s
}	133.3 s		
1" ^J		130.7 s	130.7 s
5' }			114.0 d
}	110.9 d	110.9 d	
5")			110.9 d

Run in CDCl₃ at 25 MHz; s, singlet; d, doublet; t, triplet. Assignment establishment by frequency off-resonance decoupling.

The position of the phenolic hydroxyl group in phillygenin (5) was deduced by comparison of its ¹³C NMR spectral data with those of eudesmin (3) and epieudesmin (4) (Table 1) on the basis of Nishibe's report [7]. Only the characterization of the new sesquiterpenes is described here.

RESULTS AND DISCUSSION

IR and UV spectra and specific rotation of kobusimin A (7) (see Experimental) indicated that it contained an α,β -unsaturated ketone moiety and that it could be a derivative of 3S-(+)-9-oxonerolidol (6). The ¹H NMR spectrum in CDCl₃ had peaks at δ 4.28

Table 2. ¹³C NMR data (ppm) for 9-oxonerolidol (6) and kobusimin A (7)

Carbon no.	6	7
1	111.4 t	111.8 t
2	144.7 d	144.3 d
3	73.1 s	72.7 s
4	41.8 t	38.0 t
5	$23.0 \ t$	25.1 t
6	122.6 d	89.5 d
7	129.4 s	141.0 s
8	55.1 t	45.6 t
9	198.8 s	200.3 s
10	129.1 d	123.0 d
11	155.3 s	158.4 s
12	27.6 q	27.8 q
13	$27.8 \dot{q}$	27.8 q
14	16.5 q	120.2 t
15	20.7 q	21.2 q

Run in CDCl₃ at 25 MHz; s, singlet; d, doublet; t, triplet; q, quartet. Assignment establishment by frequency off-resonance decoupling.

(1H, br t, J = 6 Hz), 5.0, 5.24 (2H, each s, C-14 H) and 10.76 (1H, s, OOH, D₂O exchangeable) together with peaks due to allylic protons (δ 4.90–5.92). The ¹³C NMR spectrum (Table 2) showed 15 peaks of which three were assignable to oxygenated carbons and were located at 200.3 (C-9), 72.7 (C-3) and 89.5 ppm (C-6). The last of these had a chemical shift characteristic of a carbon carrying a hydroperoxy group [8, 9]. An intense ferrous thiocyanate test further supported the presence of a hydroperoxy group [10].

In order to obtain further chemical evidence for an allylic hydroperoxy group, kobusimin A was converted by acetic anhydride and pyridine to the conjugated diketone (7a) [UV(MeOH): 290 nm; IR(CHCl₃) cm⁻¹: 1680, 1650, 1620]. Furthermore, reduction of 7 with triphenylphosphine gave the conjugated enonediol 7b [IR $\nu_{\text{max}}^{\text{CHCl}_3}$ cm⁻¹: 3620, 3420, 1685, 1620; UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm: 272 (sh), 278, 293 (sh) ¹H NMR(CDCl₃): δ 1.34 (3H, C-13Me), 1.90, 1.96 (9H, C-12, 14, 15Me)]. These observations confirmed the presence of the hydroperoxy group at C-6 except for its configuration.

The second new compound, kobusimin B (8) also gave a positive ferrous thiocyanate test. However, it was very labile, and was converted during purification with 10% silver nitrate impregnated Si gel TLC to a diol, deoxykobusimin B (8a), which had an 'H NMR spectrum (see Experimental) similar to that of 3S-(+)-3,7-dimethyl-1,5-octadiene-3,7-diol [11] except for the presence of an isopentenone moiety. Therefore, the structure of deoxykobusimin B is assumed to be 8a except for the stereochemistry of the diol and the geometry of the 5,6-double bond. Kobusimin B should therefore be 8.

In order to interrelate 6-8, the photo-oxygenation of 9-oxonerolidol (6) in methanol using visible light and methylene blue as sensitizer was carried out, and gave kobusimin A (7) and B (8) in a ratio of ca 10:1 and a 65% yield. 8 was purified by reduction with triphenyl phospine to give deoxykobusimin B (8a).

Addition of singlet-oxygen in the ene reaction is assumed to occur via a cis cyclic mechanism, probably perpendicularly to the 6,7-double bond from both sides of the 9-oxonerolidol plane to afford 7 and 8 [12]. Consequently, the configuration of the hydroperoxy groups in kobusimin A and B is not known.

EXPERIMENTAL

Mps are uncorr. 1 H NMR (100 MHz) and 13 C NMR (25 MHz): CDCl₃, δ units relative to TMS. MS (20 or 70 eV) direct insertion. IR: CHCl₃. [α]_D: CHCl₃ or CCl₄. UV: MeOH. Spots were detected by UV (254 nm) and spraying with 10% H₂SO₄ and then heating at 100° or with ferrous thiocyanate reagent.

Extraction and separation. The MeOH extract of fresh leaves (3.3 kg) of M. kobus D.C. collected in July, 1980 at our University, was divided into n-hexane and CHCl₃-soluble fractions (23 g). The residue was chromatographed over a column of Si gel (400 g) using C₆H₆ with gradually increasing proportions of EtOAc as eluant.

First fraction (C_6H_6 -EtOAc, 20:1) gave sesamin (1, 1.8 g), kobusin (2, 1.5 g), 9-oxonerolidol (6, 0.5 g), kobusimin A (7, 0.1 g) and kobusimin B (8, 0.05 g). The second fraction (5:1) gave eudesmin (3, 1.7 g), epieudesmin (4, 0.1 g) and phillygenin (5, 1.2 g).

Sesamin (1). Mp 121–125°. $[\alpha]_D + 69.2^\circ$ (CHCl₃; c 0.68). MW 354 (MS). $C_{20}H_{28}O_6$. UV λ_{max}^{MeOH} nm: 236, 286. IR $\nu_{max}^{CHCl_3}$ cm⁻¹: 1610, 1505, 1490, 1445, 1250. ¹H NMR: δ 3.04 (2H, m, C-1, 5H), 3.84 (2H, dd, J = 4, 9 Hz, C-4, 8H), 4.2 (2H, dd, J = 7, 9 Hz, C-4, 8H), 4.7 (2H, d, J = 4 Hz, C-2, 6H), 5.94 (2H, s, OCH_2O -), 6.78–6.84 (ar.H).

Kobusin (2). Colourless oil. [α]_D + 58.6° (CHCl₃; c 3.33). MW 370 (MS). $C_{21}H_{22}O_6$. UV λ_{max}^{MeOH} nm: 232, 284. IR $\nu_{max}^{CHCl_3}$ cm⁻¹: 1610, 1595, 1505, 1490, 1445, 1250. ¹H NMR: δ 3.08 (2H, m, C-1, 5H), 3.84-3.94 (2H, m, C-4, 8H), 3.84, 3.86 (2 × OMe), 4.24 (2H, dd, J = 7, 9 Hz, C-4, 8H), 4.72 (2H, d, J = 4 Hz, C-2, 6H), 5.92 (-OCH₂O-), 6.76-6.84 (ar.H).

Eudesmin (3). Mp 98–100°. [α]_D+61.0° (CHCl₃; c 0.4). MW 386 (MS). C₂₂H₂₆H₆. UV $\lambda_{\rm max}^{\rm MeOH}$ nm: 232, 279. IR $\nu_{\rm max}^{\rm CHCl_3}$ cm⁻¹: 1610, 1595, 1510, 1465, 1260, 1140. ¹H NMR: δ 3.12 (2H, m, C-1, 5H), 3.86–3.96 (2H, m, C-4, 8H), 3.86, 3.9 (4 × OMe), 4.26 (2H, dd, J=7, 9 Hz, C-4, 8H), 4.76 (2H, d, J=4 Hz, C-2, 6H), 6.84–6.92 (ar.H). ¹³C NMR: Table 1.

Epieudesmin (4). Mp 122–125°. [α]_D + 113.3° (CHCl₃; c 0.38). MW 386 (MS). $C_{22}H_{26}O_6$. UV $\lambda_{\max}^{\text{MeOH}}$ nm: 231, 279. IR $\nu_{\max}^{\text{CHCl}_3}$ cm⁻¹: 1610, 1595, 1510, 1470, 1265, 1160, 1140. ¹H NMR: δ 2.94 (1H, m, C-5H), 3.2–3.4 (2H, m, C-1, 4H), 3.7–4.2 (3H, m, C-4, 8H), 3.85, 3.86, 3.88, (3×OMe), 4.44 (1H, d, J = 7 Hz, C-6H), 4.85 (1H, d, J = 5 Hz, C-2H), 6.8–6.92 (ar.H). ¹³C NMR: Table 1.

Phillygenin (5). Mp 135–136°. $[\alpha]_{\rm D}$ + 91.6° (CHCl₃; c 0.5). MW 372 (MS). Calc. for C₂₁H₂₄O₆: C, 67.25; H, 6.33. Found: C, 67.73; H, 6.50%. UV $\lambda_{\rm max}^{\rm MeOH}$ nm (log ϵ): 231 (4.46), 280 (3.80). IR $\nu_{\rm max}^{\rm CHCl_3}$ cm⁻¹: 3575 (OH), 1615, 1595, 1515, 1470, 1275. ¹H NMR: δ 2.90 (1H, m, C-5H), 3.2–3.4 (2H, m, C-1, 4H), 3.6–4.2 (3H, m, C-4, 8H), 3.84, 3.88 (2×OMe), 4.42 (1H, d, J = 7 Hz, C-6H), 4.84 (1H, d, J = 5 Hz, C-2H), 5.56 (1H, s, OH). ¹³C NMR: Table 1.

3S-(+)-9-Oxonerolidol (6). Colourless oil. $\{\alpha\}_D + 18.6^{\circ}$ (CCl₄; c 1.6). UV $\lambda_{\text{max}}^{\text{McOH}}$ nm: 241. IR $\nu_{\text{max}}^{\text{CRU}_3}$ cm⁻¹: 3600, 3500, 1680, 1620. MS m/z: 236 (M⁺, C₁₅H₂₄O₂), 218, 203. ¹H NMR: δ 1.28 (3H, s, C-13Me), 1.6 (3H, s, C-14Me), 1.88 (3H, s, C-12Me), 2.12 (3H, s, C-15Me), 3.0 (2H, s, C-8H), 4.9–6.0 (3H, m, CH₂=CH-, J = 17, 10, 3 Hz), 5.12 (1H, m, C-6H), 6.04 (1H, br s, C-10H). ¹³C NMR: Table 2.

Kobusimin A (7). Colourless oil. Positive ferrous thiocyanate test. $[\alpha]_D + 9.7^\circ$ (CCl₄; c 0.35). UV $\lambda_{\rm max}^{\rm MeOH}$ nm: 242. IR $\nu_{\rm max}^{\rm CHCl_3}$ cm⁻¹: 3620, 3300, 1680, 1620, 1600, 1120, 1050, 1000, 925. MS m/z: 268 (no M⁺, C₁₅H₂₄O₄), 250, 234, 216. ¹H NMR: δ 1.26 (3H, s, C-13Me), 1.92 (3H, s, C-12Me), 2.14 (3H, s, C-15Me), 3.18 (2H, s, C-8H), 4.28 (1H, br t, J = 6 Hz, C-6H), 5.0, 5.24 (2H, each s, C-14H), 4.9-5.92 (3H, m, CH₂=CH-), 6.05 (1H, br s, C-10H), 10.76 (1H, s, OOH). ¹³C NMR: Table 2.

3,7,11 - Trimethyl - 6,9 - dioxo - 1,7,10 - triene - 3 - ol (7a). 20 mg of kobusimin A (7) was treated with Ac_2O (1 ml) and pyridine (1 ml) at room temp. overnight. Ice was then added to the reaction mixture, which was treated in the usual manner. The residue was passed through a column of Si gel (3 g CHCl₃) to give an oil (7a, 5 mg). IR $\nu_{\text{max}}^{\text{CHCl}_3}$ cm⁻¹: 3620, 3500, 1680, 1650, 1620, UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm: 290. MS m/z: 250 (M⁺, $C_{15}H_{22}O_3$). ¹H NMR: δ 1.36 (3H, s, C-13Me), 1.52 (3H, s, C-14Me), 1.9 (3H, s, C-12Me), 2.05 (3H, s, C-15Me).

3,7,11 - Trimethyl - 9 - oxo - 1,7,10 - triene - 3,6 - diol (7b). 30 mg of kobusimin A (7) was dissolved in MeOH (8 ml), and the soln stirred with 1.5 eq. (45 mg) of Ph₃P for 2 hr. The reaction mixture was evaporated to dryness and the residue chromatographed on Si gel using CHCl₃-MeOH (10:1) as eluent to afford an oil (7b, 10 mg). IR $\nu_{max}^{CHCl_3}$ cm⁻¹: 3620, 3420, 1685, 1620. UV λ_{max}^{MeOH} nm: 272 (sh), 278, 293 (sh). MS m/z: 252 (no M⁺), 234 (M⁺ - H₂O), 216 (M⁺ - 2 × H₂O). ¹H NMR: δ 1.34 (3H, s, C-13Me), 1.9, 1.96 (9H, each s, C-12, 14, 15Me), 5.06-6.2 (3H, m, CH₂=CH-), 5.1 (1H, m, C-6H), 6.04 (2H, m, C-8, 10H).

Deoxykobusimin B (8a). Colourless oil. UV $\lambda_{\text{max}}^{\text{MoOH}}$ nm: 238. IR $\nu_{\text{max}}^{\text{CHCl}_3}$ cm⁻¹: 3600, 3500, 1675, 1615. MS m/z: 253 (M⁺ + 1, C₁₅H₂₄O₃), 235, 217. ¹H NMR: δ 1.26, 1.30 (6H, each s, C-13, 14Me), 1.92 (3H, s, C-12Me), 2.2 (3H, s, C-15Me), 2.68 (2H, br s, C-8H), 4.92–6.08 (3H, m, CH₂=CH–), 5.64 (2H, br s, C-6, 7H), 6.04 (1H, br s, C-10H).

Photo-oxygenation of 9-oxonerolidol (6). 80 mg of 9-oxonerolidol (6) and 8 mg of methylene blue were dissolved in MeOH (20 ml) and placed in a Pyrex tube connected to an O₂ source. The reaction tube was equipped with a 100 W high-pressure Hg lamp, bubbling gently with O₂ at 15°. After 3 hr, the reaction mixture was worked-up by evaporation of the solvent and the residue purified by prep. TLC (Si gel) to give 52 mg of kobusimin A (7) and 5 mg of crude kobusimin B (8), which was reduced with Ph₃P to provide deoxykobusimin B (8a, 2 mg). The resulting kobusimin A (7) and deoxykobusimin B (8a) was identical by IR and ¹H NMR comparison.

REFERENCES

- Fujita, Y., Kikuchi, M. and Fujita, S. (1975) Yakugaku Zasshi 95, 162 and 235.
- Hirose, M., Satoh, Y. and Hagitani, A. (1968) Nippon Kagaku Kaishi 89, 889.
- Kamikado, T., Chang, C.-F., Murakoshi, S., Sakurai, A. and Tamura, S. (1975) Agric. Biol. Chem. 39, 833.
- Atal, C. K., Dhar, K. L. and Pelter, A. (1967) J. Chem. Soc. 2228.
- Chiba, M., Hisada, S. and Nishibe, S. (1977) Chem. Pharm. Bull. 25, 3435.
- Stoessl, A., Stothers, J. B. and Ward, W. B. (1975) Can. J. Chem. 53, 3351.
- 7. Chiba, M., Hisada, S., Nishibe, S. and Thieme, H. (1980) Phytochemistry 19, 335.
- 8. Doskotch, R. W., El-Feraly, F. S., Fairchild, E. H. and Huang, C.-T. (1976) Chem. Commun. 402.
- El-Feraly, F. S., Chan, Y-M., Capiton, G. A., Fairchild, E. H. and Doskotch, R. W. (1979) J. Org. Chem. 44, 3952.
- Abraham, M. H., Davies, A. G., Llewellyn, D. R. and Thain, E. M. (1957) Analyt. Chim. Acta. 17, 499.
- Etoh, H., Ina, K. and Iguchi, M. (1980) Agric. Biol. Chem. 44, 2999.
- 12. Stephenson, L. M., Grdina, M. J. and Orfanopoulos, M. (1980) Acc. Chem. Res. 13, 419.